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Introduction:
A robot deployed in an unstructured environment such as 
a household should be capable of handling unanticipated 
changes to the task environment. To this end, we develop 
a policy learning framework and a simulation environment 
in MuJoCo [1] for a contact-rich peg-in-hole task that takes 
in RGB and force-torque (F/T) readings as input. We 
perform an extensive evaluation of this framework on 
several types of task variations.

Objectives:
1. To evaluate which types of peg-in-hole task variations 

pose the greatest generalization challenges for a 
multisensory vision + F/T framework.

2. To explore a method to improve task variation 
robustness through multisensory data augmentation.

Learning and Evaluation Framework:
Our pipeline is composed of four main steps:

1. Expert Demonstration Collection: A human expert 
provides EEF trajectories through teleoperation.

2. Data Augmentation: Expert trajectories are replayed in 
environments with a subset of task variations applied.

3. Policy Learning: The observation encoder [2] and policy 
network is trained with a behavior cloning objective [3].

4. Evaluation: The trained policy is evaluated in an 
environment with task variations unseen during 
training.

AugInsert: Learning Robust Visual-
Force Policies via Data Augmentation 
for Object Assembly Tasks

Results:
• The physical Grasp Pose task variation presents the 

largest generalization challenge for our model.

• Data augmentation with physical variations improved 
performance on new instances of those variations.

• Tactile (F/T) information is shown to be the most 
important for our task, while visual (RGB) information is 
the least important.
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