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Introduction:

A robot deployed in an unstructured environment such as
a household should be capable of handling unanticipated
changes to the task environment. To this end, we develop
a policy learning framework and a simulation environment
in MulJoCo [1] for a contact-rich peg-in-hole task that takes
in RGB and force-torque (F/T) readings as input. We
perform an extensive evaluation of this framework on Grasp Pose
several types of task variations.

Adam Imdieke (presenting)

4 4
1t 1

 —_
X-Translation Z-Translation

Y )
Cl 2 T C |¢|

Contact Start

{ Y-Rotation TT Z-Rotation T
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1. To evaluate which types of peg-in-hole task variations — * " * g w
pose the greatest generalization challenges for a o0
multisensory vision + F/T framework. <
2. To explore a method to improve task variation ~T / m g m N -
robustness through multisensory data augmentation. - v ' ‘ ' 5 10 15

Learning and Evaluation Framework: . - Object Body Shape Sensor Noise

Our pipeline is composed of four main steps:

1. Expert Demonstration Collection: A human expert
provides EEF trajectories through teleoperation.

2. Data Augmentation: Expert trajectories are replayed in
environments with a subset of task variations applied.

3. Policy Learning: The observation encoder [2] and policy
network is trained with a behavior cloning objective [3].

4. Evaluation: The trained policy is evaluated in an
environment with task variations unseen during

training. Task Rollout
Results:

 The physical Grasp Pose task variation presents the

largest generalization challenge for our model. Data Collection
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 Data augmentation with physical variations improved Force- -
performance on new instances of those variations. Torque -
e Tactile (F/T) information is shown to be the most
important for our task, while visual (RGB) information is

Proprio.

the least important. Data Augmentation
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